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Extrusion modifies some physicochemical properties of milk protein
concentrate for improved performance in high‐protein nutrition bars

Abstract
BACKGROUND Extruded and ground milk protein concentrate powders, specifically those with 800 g kg–1
protein (i.e. MPC80), imparted softness, cohesion and textural stability to high‐protein nutrition (HPN) bars.
The present study evaluated some physicochemical properties of extruded and conventionally produced (i.e.
spray‐dried) MPC80 to explain these improvements. Protein chemical changes and aggregations within
MPC80‐formulated HPN bars during storage were characterized.

RESULTS Extruded MPC80 powders had broader particle size distribution (P < 0.05) and smaller
volume‐weighted mean diameter (P < 0.05) than the spray‐dried control. Loose, tapped and particle densities
increased (P < 0.05) and correspondingly occluded and interstitial air volumes decreased (P < 0.05) after
extruding and milling MPC80. Extrusion decreased water holding capacity (P < 0.05) and solubility (P <
0.05), yet improved the wettability (P < 0.05) of MPC80. MPC80 free sulfhydryl (P < 0.05) and free amine
(P < 0.05) concentrations decreased after extrusion. Sulfhydryl and amine concentrations changed (P < 0.05)
and disulfide‐linked and, more prominently, Maillard‐induced aggregates developed during HPN bar storage.

CONCLUSION Extrusion and milling together changed the physicochemical properties of MPC80.
Chemical changes and protein aggregations occurred in HPN bars prepared with either type of MPC80. Thus,
the physicochemical properties of the formulating powder require consideration for desired HPN bar texture
and stability. © 2017 Society of Chemical Industry
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Abstract 

BACKGROUND:  Extruded and ground milk protein concentrate powders, specifically those 

with 800 g kg-1 protein (i.e., MPC80), imparted softness, cohesion, and textural stability to high-

protein nutrition (HPN) bars.  This work evaluated some physicochemical properties of extruded 

and conventionally produced (i.e., spray-dried) MPC80 to explain these improvements.  Protein 

chemical changes and aggregations within MPC80-formulated HPN bars during storage were 

characterized.   

RESULTS:  Extruded MPC80 powders had broader particle size distribution (P < 0.05) and 

smaller volume-weighed mean diameter (P < 0.05) than the spray-dried control.  Loose, tapped, 

and particle densities increased (P < 0.05) and correspondingly occluded and interstitial air 

volumes decreased (P < 0.05) after extruding and milling MPC80.  Extrusion decreased water 

holding capacity (P < 0.05) and solubility (P < 0.05), yet improved the wettability (P < 0.05) of 

MPC80.  MPC80 free sulfhydryl (P < 0.05) and free amine (P < 0.05) concentrations decreased 

after extrusion.  Sulfhydryl and amine concentrations changed (P < 0.05), and disulfide-linked 

and, more prominently, Maillard-induced aggregates developed during HPN bar storage. 

CONCLUSIONS:  Extrusion and milling together changed the physicochemical properties of 

MPC80.  Chemical changes and protein aggregations occurred in HPN bars prepared with either 

type of MPC80.  Thus, the physicochemical properties of the formulating powder require 

consideration for desired HPN bar texture and stability.   

 

KEYWORDS 

Free sulfhydryl, free amine, contact angle, water holding capacity, protein bar  
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INTRODUCTION 

Starchy matrices easily extrude to produce puffed snacks of low nutritional value.  

Adding protein is appealing from a nutritional standpoint, but decreases processability and 

negatively impacts extrudate textural quality.1  Hence, literature has focused extensively on 

protein-starch interactions that develop during extrusion by processing different proteins with 

different starches, and then reporting extrudate properties (e.g., expansion index, hardness).  

Direct food applications here include expanded snacks, textural crisps, and meat analogs, but are 

limited overall.2, 3  A lesser-studied use of extrusion is to simultaneously apply heat, shear force, 

and pressure to modify the physiochemical properties of protein concentrates and isolates to 

produce novel protein ingredients. 

Extrusion modified the physicochemical properties of milk protein concentrate (MPC), 

pea protein isolate (PPI), whey protein concentrate (WPC), and soy protein isolate (SPI) for 

improved functionality in target applications.4-7  Nutritional and other product qualities of puffed 

cornmeal were improved by adding extrusion-modified whey protein isolate (WPI).8  Extruded 

MPC produced non-baked high-protein nutrition (HPN) bars (e.g, 200 to 500 g kg-1 protein) that 

were softer, more cohesive, and less prone to texture changes during storage than bars 

formulated with the spray-dried control.9, 10  In both examples, extrusion modified each 

ingredient’s physicochemical properties; not just the protein’s structure-function relationships.  

The summation of change improved performance in each application.  However, specific 

physical and chemical properties altered by extruding and milling MPC with protein content of 

800 g kg-1 (i.e., MPC80) remain unknown.  Further investigation is required to understand why, 

from both a chemical and physical standpoint, extruded MPC80 powders, in comparison with a 

spray-dried control, produce softer, less crumbly, and more texturally stable HPN bars.  
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HPN bars are complex systems to study because their texture deteriorates with time and 

is not attributable to a single mechanism.  Formulation (e.g., macronutrient composition, 

ingredients) and processing (e.g., baked versus formed, mixing times) are two factorial 

categories that influence product texture even before storage at different environmental 

conditions (e.g., temperature, packaging).11  Many scientific studies have looked at the effect of 

protein source on HPN bar texture and its time-dependent changes assuming that different 

proteins are chemically and structurally disposed to perform better or worse in these 

applications.11-15  A common conclusion is that food protein hydrolysates produce soft, texturally 

stable HPN bars.14, 16  Extruded and ground MPC80s resulted in HPN bars with similar texture 

attributes, yet, food protein extrusion is not known to hydrolyze proteins.5, 10  While protein 

ingredients do perform differently in HPN bars, these differences are not only due to the 

molecular differences between proteins, but also due partially to the unapparent physical 

differences between the powders.   

Conventional MPCs are derived from fluid skim milk through sequential ultrafiltration, 

concentration, and spray drying, which yields powder that maintains the casein to whey protein 

ratio (i.e., 800 g casein and 200 g whey kg-1 protein).  Regardless, this production sequence, 

especially spray drying, is common to many protein concentrates and isolates, and partially 

dictates the resultant physicochemical properties (e.g., particle size distribution, particle and bulk 

densities, occluded and interstitial air volumes, wettability, surface hydrophobicity, 

dispersibility, solubility, water holding capacity).  Subsequent extruding, drying, and milling a 

conventionally produced MPC80 will alter its physicochemical properties, several of which have 

been identified as variables that affect protein ingredient performance in HPN bars.11  For 

example, soy protein ingredients with intermediate solubility (30% < soluble solids index < 
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55%) produced HPN bars that balanced hardness, e.g., not too hard, and cohesiveness, e.g., not 

too crumbly.11  Compared to the spray-dried control, extruded MPC80 was less soluble.4  

Despite having an opposing effect on solubility than hydrolysis,17 these extruded powders 

performed better than the control in model HPN bars.9, 10  Moreover, extruded MPC80 also had 

lower water holding capacity (WHC) than spray-dried MPC80.4  Reducing WHC may limit 

moisture migration between HPN bar constituents, a commonly proposed mechanism of texture 

change, during storage.12, 18  The effect of extrusion on MPC80’s other physiochemical 

properties, including particle size distribution, particle and bulk densities, occluded and 

interstitial air volumes, wettability, and surface hydrophobicity are not well characterized.   

The following study characterizes the physicochemical properties of conventionally 

produced and extruded MPC80.  Free sulfhydryl and free amine concentration of each MPC80 is 

considered since preceding work, albeit mostly done using whey protein derived ingredients, has 

strongly suggested that time-dependent texture changes of intermediate moisture foods occur as 

disulfide-bonded and Maillard-induced protein aggregates form.15, 19  From a free sulfhydryl 

standpoint, MPC80 is less likely to participate in the formation of new disulfide bonds compared 

to whey-based ingredients since casein, the main protein fraction in MPC80, contains no free 

sulfhydryl groups whereas beta-lactoglobulin (β-lg), the predominant whey protein, contains 1 

free sulfhydryl per macromolecule (i.e., C121).  However, protein bars formulated with spray-

dried MPCs were more susceptible to texture changes during storage than those formulated with 

whey proteins.12, 13  Extruding MPC80 can decrease free sulfhydryl and free amine concentration 

via protein-protein disulfide bond formation and the Maillard reaction with residual lactose.20, 21  

These chemical changes may limit progressive and texture-changing protein aggregation within 

HPN bars and the latter part of this study seeks further understanding of such changes.  The 
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aforementioned properties, including particle sizes, densities, interstitial and occluded air 

volumes, solubility, WHC, surface hydrophobicity, and wettability of conventional and extruded 

MPC80, were measured and used in combination with the chemical changes brought out by 

extrusion to explain why extruded MPC80s texturally outperform their spray-dried counterparts 

in HPN bars. 

MATERIALS AND METHODS 

Materials 

Ultrafiltered and spray-dried MPC80 powder (protein:  785 g kg-1, fat:  43 g kg-1, ash:  67 

g kg-1, moisture:  49 g kg-1, lactose:  56 g kg-1; Milk Specialties Global, Eden Prairie, MN) was 

previously extruded at die-end melt temperatures of 95, 105, and 116°C.  Extrudates were dried 

at 40°C for 26 h and jet-milled into three respective powders:  E95 (protein:  740 g kg-1, 

moisture:  76 g kg-1), E105 (protein:  743 g kg-1, moisture:  75 g kg-1), and E116 (protein:  744 g 

kg-1, moisture:  74 g kg-1).10  E105, E116, and MPC80 were each independently used to make (n 

= 2) model HPN bars with 300 g kg-1 protein that were kept at 22°C or 32°C for 0, 6, or 29 weeks 

prior to quick freezing in liquid nitrogen and storage at -80°C.10   

The Pierce™ BCA protein assay, 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), urea, 

EDTA, SDS, boric acid, sodium chloride, sodium tetraborate decahydrate, isopropanol, and β-

mercaptoethanol were purchased from Fisher Scientific (Waltham, MA).  Dithiothreitol (DTT), 

O-phthalaldehyde (OPA), Nα-acetyl-L-lysine, L-cysteine hydrochloride monohydrate, and 

bovine serum albumin (BSA) were purchased from Sigma-Aldrich (St. Louis, MO).  AnyKD™ 

Mini-Protean® TGX™ precast gels, 2x Laemmli sample buffer, Precision Plus Protein™ 

Standard, Bio-Safe™ Coomassie Stain, and 10x tris/glycine/SDS running buffer were from Bio-

Rad, Inc. (Hercules, CA).  Millipore water had resistivity of 18.2 MΩ·cm at 25°C. 
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Powder physical properties:  Size, density, and interstitial & occluded air volumes 

Powder particle size was measured (n = 2) by laser diffraction (Mastersizer 2000, 

Malvern Inc., Worcestershire, United Kingdom ) while dispersed in isopropanol.10  Particle 

density (ρparticle) was measured (n = 2) using a helium pycnometer (G-DenPyc 2900, Gold APP 

Instruments Corporation, Beijing, China).  Powder (30 g ± 0.1 g) volume in a 100-mL glass 

cylinder after 0, 100, and 1,250 taps (Autotap™, Quantachrome Instruments, Boynton Beach, 

FL) was used to calculate (n = 3) loose (ρloose), tapped (ρ100X), and extremely tapped (ρ1250X) 

densities, respectively.  Solids density (ρsolids) for MPC80 was 1380 g L-1.22, 23  Occluded (Voa = 

100/ρparticle – 100/ρsolids) and interstitial (Via = 100/ρ100X – 100/ρparticle) air volumes were reported 

for each powder.   

Protein solubility 

Powder was dispersed in Millipore water at protein content of 8 g kg-1 and stir bar speed 

of 650 rpm.  Dispersion pH was adjusted, and readjusted if needed after 15, 45, and 75 min, to 

2.0, 3.5, 4.6, 5.5, 6.8, 8.0, 9.5, or 11.0 using hydrochloric acid (2 to 8 mol L-1) or sodium 

hydroxide (2 to 8 mol L-1) (n = 3).  After 90 minutes of dissolution, dispersions were centrifuged 

at 15,000 × g for 15 min and supernatant filtered through Whatman No. 1 paper.  If needed, 

filtrate was diluted with Millipore water and protein concentration was calculated (n = 2) from 

the linear region of the BSA standard curve (0.125-1.5 g L-1) that developed during the BCA 

assay.  Reported solubility was the ratio of filtrate protein concentration to initial dispersion 

protein concentration (i.e., 8 g L-1). 

Water holding capacity  

Preliminary estimation found that 5.1, 5.2, 5.3, and 3.6 g of E95, E105, E116, and 

MPC80 powders, respectively, were required for each WHC test.24  Eight, 9, 10, and 11 g 
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Millipore water were added to separate 50-mL centrifuge tubes containing the indicated weight 

of each extruded powder.  Nine and a half, 10.5, 11.5, and 12.5 g Millipore water were each 

added to 50-mL centrifuge tubes containing 3.6 g control MPC80.  Powder and water was hand 

mixed with a spatula for 2 min.  Resultant pastes were centrifuged at 3,900 × g for 10 min.  After 

decanting the supernatant when present, water mass retained by the initial powder mass was 

calculated by difference.  Native water mass in each powder sample, approximately 390 and 180 

mg for extruded and control MPC80s, respectively, was added to the retained mass of water.  

Total water mass was divided by solids mass and reported WHC of each powder was the average 

between the tube with the lowest volume supernatant and the supernatant-less tube tested at 1 g 

less water addition.  The assay was triplicated. 

Dynamic contact angle analysis 

Powder (10 mg) was loaded into a 13-mm pellet die and was pressed (Model 4350, 

Carver, Inc., Wabash, IN) to and maintained at 8,000 kgf for 2 min.25  A 4-µL Millipore water 

droplet was dispensed (Gilmont GS-1200 Micrometer Syringe, Cole-Parmer, Vernon Hills, IL) 

onto pressed surfaces (n = 4).  Profile images were immediately acquired using a goniometer 

(Model 250, Ramé-hart Instrument Co., Succasunna, NJ) at 5 images s-1, which was slowed to 1 

image s-1 after 20 s.  Mean contact angle at 0 s (i.e., θ0s) and 25 s (i.e., θ25s) and mean droplet 

volume at the same time points (i.e., V0s, V25s) were extracted from processed images 

(DROPimage®, version 2.8.02, University of Oslo, Norway).  For the first 25 s, droplet contact 

angle and volume rates of change (i.e., dθ/dt, dV/dt) on each surface were determined.   

Free sulfhydryl concentration 

Free sulfhydryl buffer (pH 8.5) contained 8 mol L-1 urea, 4.1 mmol L-1 EDTA, and 20 g 

L-1 SDS in borate buffer (100 mmol L-1 boric acid, 75 mmol L-1 sodium chloride, and 25 mmol 
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L-1 sodium tetraborate decahydrate).  Powder (0.8 g) plus free sulfhydryl buffer (8 mL) and 

separately free sulfhydryl buffer sans SDS (8 mL) were mixed for 2 h at 900 rpm prior to 

diluting to 10 mL (n = 3).  HPN bars (1.6 g) were mixed with free sulfhydryl buffer (14.4 g) 

containing SDS for 2 h at 750 rpm (n = 2).  After centrifuging powder and HPN bar dispersions 

for 20 min at 15,000 × g, supernatant free sulfhydryl concentration was immediately measured (n 

= 2) by Ellman’s assay and calculated in µmol L-1 using a cysteine standard curve (R2 > 0.998) 

that encompassed measurement net absorbance.21, 26  Results were divided by BCA assayed 

soluble protein (g L-1) to report free sulfhydryl concentrations in µmole g-1 protein. 

Reduced and non-reduced SDS-PAGE  

HPN bar supernatants from the free sulfhydryl assay were standardized at 4 g L-1 protein 

and were diluted 1 volume to 2 volume with either non-reducing or reducing 2x Laemmli sample 

buffer.  Three µL of each sample and 10 µL of the molecular marker were electrophoresed on 

precast gels at 150 V for 45 min.  SDS-PAGE details, specific to HPN bars, are provided 

elsewhere.21 

Free amine concentration 

Free amine buffer (pH 9.0) contained 50 mmol L-1 boric acid, 37.5 mmol L-1 sodium 

chloride, 12.5 mmol L-1 sodium tetraborate decahydrate, 10 g L-1 SDS, and 1 g L-1 DTT.  Protein 

powder (0.16-0.17 g) dispersed in free amine buffer (23 mL) was stirred at 900 rpm for 2 h 

before diluting to 25 mL.  In 25-mL flasks, HPN bars (0.31 g) and free amine buffer (10 mL) 

mixed for 2 h at 650 rpm.  After centrifuging 20 min at 15,000 × g, sample supernatants were 

filtered through Whatman No. 4 filter paper.  The BCA assay measured filtrate protein 

concentration.  One-hundred µL protein standardized supernatant (i.e., 1 g L-1) was mixed with 

900 µL OPA reagent (0.8 g L-1). Absorbance at 335 nm was measured and OPA reagent 
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absorbance subtracted.9, 12  Linear (R2 > 0.9999) 3-point (500-1500 µmol L-1) and 4-point (100-

1000 µmol L-1) Nα-acetyl-L-lysine standard curves were used to calculate powder and HPN bar 

free amine concentrations, respectively.  After dividing by protein concentration (i.e., 1 g L-1), 

free amine concentration was reported in µmole g-1 protein. 

Statistical analyses 

Powder physicochemical property mean values were differentiated using the generalized 

linear mixed model (GLMM) (SAS® version 9.4, SAS Institute Inc., Cary, NC).  Protein powder 

was the only independent variable in the analysis of densities, volumes, particle sizes, WHC, and 

free amine concentration.  pH, SDS, and time, each of which were set as categorical independent 

variables, were added to the models analyzing protein solubility, free sulfhydryl concentration, 

and water droplet contact angle and volume, respectively.  Random error terms accounted for 

assay replication and replicated measure of each powder.  Water droplet contact angle and 

volume were also modeled with time as a continuous variable and, using those models, average 

rate of change for each (i.e., dθ/dt, dV/dt) were determined after correcting for multiplicity with 

the simulate adjustment (α = 0.05).  HPN bar free amine and free sulfhydryl concentrations were 

analyzed using the GLMM.  Independent variables were formulating powder, time, temperature, 

and all interactions.  Assay replicate and replicate nested preparation of each HPN bar were the 

random terms.  Statistical contrasts were significant if the adjusted P-value was less than 0.05. 

RESULTS AND DISCUSSION 

Powder physical properties:  Particle sizes, densities, and occluded & interstitial air 

volumes 

Control MPC80 had larger particle size than the extruded powders (P < 0.05).  Diameters 

(i.e., D10, D50, D90, D4,3) decreased in the order of E116, E105, and E95 (Table 1).  Although D4,3 
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values were separated by only 18 microns, span values revealed that the extruded powders had 

much broader particle size distribution than the control (Table 1).  Particle size and its 

distribution affect ingredient functionality.  Smaller milk protein isolate (MPI) powder particles 

were less absorptive of and less wettable by water than larger, agglomerated MPI particles.27, 28  

Particle size distribution of E105, E116, and MPC80 were previously discussed as factors 

affecting HPN bar texture,10 but the specific functionalities of MPC80 altered by both particle 

size reduction and extrusion have not been discussed. 

Mean ρloose, ρ100X, ρ1250X, and ρparticle for the extruded MPC80s were 520, 600, 640, and 

1320 g L-1, respectively, and each was greater (P < 0.05) than those measured for the control 

(Table 1).  Extruded powders contained, on average, 0.91 and 0.033 L kg-1 interstitial and 

occluded air, respectively, and both Via and Voa (Table 1) were lower than the control (P < 0.05).  

Smaller, more disperse powder particles in extruded MPC80 fill voids occupied by air in the 

control powder, which decreased its Via.  Extruding and milling conventionally produced MPC80 

reduced its occluded and interstitial air volumes and increased powder and particle densities. 

While less relevant after complete dissolution, MPC80 particle structure (e.g., size, 

distribution, densities, air volumes) is partially maintained within HPN bars,12 influenecing 

texture and stability.  HPN bars made from E105 or E116 were denser and more cohesive than 

the one formulated with control MPC80.10  Control HPN bar density was 170 g L-1 lower than 

those formulated with extruded MPC80, which was due to more occluded and interstitial air in 

the conventionally produced MPC80 and lower bulk density.  The larger, more uniformly 

distributed particles found in the control powder offer less surface area for particle-particle 

interactions and, along with the powder introducing more air into the product, partly explain why 

HPN bars made from this powder are more crumbly than the ones made with extruded MPC80. 
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Powder solubility 

Extrusion reduced soluble protein at each pH (P < 0.05), which is related to overall 

solubility for these high protein powders (Figure S1).  The increase in insolubility indicates 

partial protein denaturation by extrusion.  Extruder SME while processing at 95, 105, and 116 °C 

was 216, 238, and 253 Wh kg-1, respectively.  Increasing SME coincided with increasing melt 

temperature, but did not adversely affect extrudate solubility (P > 0.05), except at pH 9.5 where 

E116 was less soluble than E95, E105, and the control (P < 0.05).  Protein denaturation becomes 

less dependent on temperature as processing concentration increases and so the 21°C melt 

temperature increase between E95 and E116 did not lead to more denaturation during 

extrusion.29  MPC80 was 14% soluble at pH 4.6, casein’s isoelectric point (pI), where complete 

whey protein dissolution or 20% protein solubility was expected.  At the same pH, extruded 

MPC80 protein solubility decreased to 3%, which suggested whey protein denaturation and was 

consistent with solubility values reported for whey proteins extruded at temperatures greater than 

90°C.6, 30  Extruded MPC80 in the present work was slightly less soluble at each pH than MPC80 

extruded on smaller equipment due to more shear being imparted.4 

Model HPN bar pH ranged from 6.0 to 6.8.10  In the encompassing pH range of 5.5 to 6.8, 

conventionally produced MPC80 protein solubility fell between 28% and 35%.  The HPN bar 

made using this MPC80 may have lacked cohesion due to the powder’s ability to resist 

dissolution, an attribute required in some degree to hold the system together.  However, extruded 

MPC80 solubility at pH 5.5 and pH 6.8 revealed that these powders were about 24% and 19% 

less soluble, respectively, than the control, and still produced a cohesive HPN bar.10  An 

alternative hypothesis is that soluble proteins possess stronger ability to pull water away from 

other HPN bar constituents, which dehydrates them and contributes to changing texture by way 
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of internal moisture migration.11  Extrusion decreased the solubility of MPC80, and in doing so 

produced a more physically and chemically inert protein ingredient suitable for the production of 

texturally stable HPN bars.9, 10 

Powder-water interaction 

Extrusion decreased MPC80’s WHC by 42% (P < 0.05).  The WHC of E95, E105, and 

E116 did not differ significantly among themselves (P > 0.05) (Table S1).  Occluded and 

interstitial air volume of powders serve as a reservoir for water within and between particles, 

respectively.  Since extrusion reduced Voa and Via (Table 1), it also reduced WHC by eliminating 

spaces that potentially entrap water in sponge-like fashion.  The extruded powders possessed 

statistically equivalent Voa and Via (P > 0.05) and this contributed to their statistically equivalent 

WHC (P > 0.05). 

Initial water droplet contact angle (i.e., θ0s) on each extruded powder surface was larger 

(P < 0.05) than that on the control (Table S1).  However, droplet profiles on the former quickly 

changed as water spread and imbibed (Figure 1).  After 25 s, droplet contact angles (i.e., θ25s) on 

each powder were statistically equivalent (P > 0.05).  During the first 25 s of dynamic contact 

angle analysis, contact angle on the control decreased at a slower rate (P < 0.05) compared to 

extruded MPC80, as suggested by dθ/dt values (Table S1).  E95, E105, and E116 absorbed a 

significant (P < 0.05) portion of the initial water droplet after 25 s whereas water droplet volume 

on the control did not change (P > 0.05) during the same timeframe (Table S1).  Water droplets 

on extruded powders collapsed, that is lost convex shape, after 60 s (Figure 1A).  After the same 

amount of time, a stable, semi-spherical droplet remained on the conventionally produced 

MPC80 (Figure 1A).   
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Limitations of the contact angle analysis, e.g., particle structure changes during 

compaction, pellet surface roughness affects results, droplet evaporation occurs, solids dissolve 

into the droplet, are well known and assay results are qualitative.  However, the simplicity and 

reproducibility of the assay make it a go-to method for comparing hydrophobicity and wettability 

of different powders.  Larger θ0s for the extruded MPC80s indicated a more hydrophobic surface.  

Rapid reduction in contact angle (Figure 1B) suggested improved wettability.  Extruding MPC80 

broke the water-impermeable crusts known to encapsulate these spray-dried powders and 

exposed hydrophobic components once relegated to the particle interior.31  Water droplet spread 

and absorption on E95, E105, and E116 was similar to that observed on low-protein MPCs, 25 

which interact better with water than high-protein varieties.  Droplet stability on MPC80 (Figure 

1A) reaffirms that spray-dried high-protein MPCs possess poor wettability.  Though initial 

hydrophobicity increased, extruding MPC80 improved wettability and overall ability to 

rehydrate, but not necessarily dissolve, when exposed to water. 

Improved wettability, lower solubility, and reduced WHC make extruded MPC80s a 

better choice for use in HPN bars than conventionally produced MPC80.  During HPN bar 

production, extruded varieties hydrate rapidly which lowers powder glass-rubber transition 

temperature and contributes to particle structure loss and system plasticization.32  Increased 

plasticization of E105 and E116 translated into HPN bars that were softer, more cohesive, and 

less crumbly than the one formulated with control MPC80, in which particle structure and 

properties were noticeably maintained.10  In the HPN bar made with control MPC80, structurally 

intact particles absorbed moisture from other components just as MPC80 powder slowly 

absorbed a droplet of water (Figure 1B).  Under right conditions, extrusion plasticize MPC80 

powder particles to similar to hydrolysates during HPN bar production.  Also, with lower WHC 
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to drive moisture migration and lower Voa to entrap water molecules within structurally intact 

particles, extruded MPC80s are less able to pull water from other HPN bar constituents during 

storage, one of the main reasons for increase in bar hardness when MPCs are used in bars.  

Textural preservation of the extruded MPC80 formulated HPN bars was partially by reduction of 

internal moisture migration.10  Extruded MPC80 interacted more favorably with water, which 

improved its ability to produce soft, cohesive, and texturally stable HPN bars.   

Protein powder and HPN bar free sulfhydryl concentration 

To increase DTNB’s accessibility to buried free sulfhydryl groups in MPC80 and elicit a 

higher response during Ellman’s assay, SDS was included in the assay buffer despite previous 

exclusion.21  Inclusion increased solubility of E116 (P < 0.05), but had no significant effect on 

the solubility of the other powders (P > 0.05).  Soluble protein, with and without SDS, ranged 

from 29.9 to 32.8 g L-1 and with similar solubility, differences in free sulfhydryl concentration 

were attributable to chemically induced changes (e.g., oxidation, disulfide bond formation).  

Extruded MPC80s had lower free sulfhydryl content than the control (P < 0.05); melt 

temperature did not have a significant effect (P > 0.05) (Table 2).  The free sulfhydryl 

concentration of E116 was numerically lower than E95 and E105, which suggested more protein 

denaturation and disulfide bond formation and/or free sulfhydryl oxidations at higher processing 

temperatures.9, 21, 33  SDS inclusion in the free sulfhydryl assay buffer did not affect (P > 0.05) 

measureable free sulfhydryl concentration of the powders (Table 2).  Resultantly, HPN bar free 

sulfhydryl evaluation required only the SDS containing buffer.  Initial HPN bar free sulfhydryl 

concentration (i.e., HPNB-0W-22) was comparable to that of the formulating protein powder 

(Table 2).   
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Protein powder and HPN bar free amine concentration 

Even though OPA registers both ε- and α-amino groups, this method is favored for 

measuring reactive or nutritionally active lysine over the total lysine technique, which includes 

nutritionally unavailable lysine.34-36  Protein solubility in the free amine buffer ranged from 3.1 

to 4.2 g L-1 and, with similar solubility, differences in free amine concentrations were 

attributable to the different processing conditions.  Extruded MPC80 free amine concentration 

was lower than the control and increasing melt temperature from 95°C to 116°C led to a larger 

decrease (P < 0.05) (Table 3).  Initial HPN bar free amine concentration (i.e., HPNB-0W-22) 

was similar to yet slightly lower than that of the formulating powder (Table 3).   

Chemical changes and protein aggregations during HPN bar storage 

Storage of HPN bars at 32°C for 6 weeks simulated 52 weeks at 22°C,14, 18 the minimum 

industry-required shelf life for such products.  Evaluations made after 6 at 32°C or 29 weeks at 

22°C served as intermediate time points only.  Twenty-nine weeks at 32°C was an extreme 

treatment combination that accelerated storage for much longer than 1 year.  Changes in 

sulfhydryl and amine concentrations were evaluated over simulated time (i.e., across rows in 

Tables 2 and 3). 

HPN bar protein soluble in the free sulfhydryl buffer was between 22.9-23.4, 22.8-23.2, 

and 26.1-27.2 g L-1 when formulated with E105, E116, and MPC80, respectively, except after 29 

weeks of storage at 32°C.  Under the latter conditions, protein solubility decreased to 6.9, 7.5, 

and 14.6 g L-1 for the same respective HPN bars.  After equivalent storage, soluble protein 

obtained from the control HPN bar was always greater than solutions derived from HPN bars 

made with extruded MPC80 (P < 0.05).  Excluding samples kept for 29 weeks at 32°C, free 

sulfhydryl concentration in the HPN bars (Table 2) did not change significantly during storage 
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when formulated with MPC80 or E116 (P > 0.05).  Free sulfhydryl concentration in the HPN bar 

formulated with E105 decreased, relative to the starting value, after 29 weeks at 22°C and after 6 

weeks at 32°C (P < 0.05).  Free sulfhydryl groups in the control HPN bar always maintained 

higher concentration than the ones prepared with extruded MPC80 (P < 0.05).  Oddly, after 29 

weeks at 32°C, sulfhydryl concentration (µmol L-1) increased while soluble protein (g L-1) 

decreased, which increased measureable free sulfhydryl concentration in each HPN bar (P < 

0.05).  If disulfide bonds formed internally and contributed to time-dependent HPN bar texture 

changes, then free sulfhydryl content should decrease.  However, reshuffling disulfide bonds, 

driven by reactive thiol groups present in β-lg (C121) and less prevalent BSA (C34), amongst 

milk proteins could lead to aggregate formation without noticeable decrease.  Sulfhydryl 

concentration, which can also decrease via oxidation, changed little over the course of ~7 months 

at 22°C even though HPN bar texture changed considerably during that time.10  These results 

corroborated those from a shorter storage study, which also found limited change in free 

sulfhydryl concentration even as HPN bar texture changed substantially.21 

HPN bar protein soluble in the free amine buffer was between 7.5 and 8.0 g L-1, except 

after 29 weeks at 32°C.  At that time, protein solubility decreased (P < 0.05) to 2.1, 1.9, and 3.6 g 

L-1 when formulated with E105, E116, and MPC80, respectively.  Despite reduction, HPN bar 

free amine concentrations (Table 3) consistently decreased throughout storage (P < 0.05) due to 

glycation of the lysine residues with glucose, fructose, and lactose and by Maillard-induced 

protein aggregation previously related to worsening of model HPN bar texture.9, 12, 13, 19  While 

there remains discrepancy about Maillard browning’s effect on HPN bar texture change,14 

glycation of lysine decreases its nutritional value.35  Sulfur containing amino acids are limiting in 



www.manaraa.com

18 

MPC and initial lysine glycation by extrusion and that seen during HPN bar storage are unlikely 

a major nutritional concern.37   

Decreasing protein solubility during HPN bar storage indicates aggregate formation.19  

Insoluble aggregate formation in the present study was not strictly due to disulfide bond 

formation, since DTT addition to the free amine buffer did not fully solubilize proteins or restore 

solubility in the HPN bars stored for 29 weeks at 32°C.  Soluble protein aggregates (PA), 

including Maillard-induced and disulfide-linked (DLPA), formed within the HPN bars as storage 

time progressed (Figures 2 and 3).  Extruding MPC80 led to DLPA formation.  These high 

molecular weight (˃ 250 kDa) aggregates, which were too large to permeate into the non-reduced 

gels, were initially present within HPN bars formulated with extruded MPC80 and they persisted 

through week 6 at 32°C (Figure 2).  These DLPA, along with some of those with molecular 

weight between 75 and 250 kDa that developed during HPN bar storage (Figure 2), were broken 

by the reducing agent and did not appear on the reduced gel (Figure 3).  β-lg participated in 

initial DLPA and their formation during storage, which was confirmed by the reappearance or 

intensification of this protein band on the reduced gels (Figure 3).  β-lg’s inability to solubilize 

from extruded MPC80 without a reducing agent led to lower measurable free sulfhydryl 

concentrations in those HPN bars compared to the one made with conventionally produced 

MPC80 (Table 2).  PA that remained on the reduced gels (Figure 3), indicated by in-lane vertical 

smearing, were due to covalently cross-linked, Maillard-induced aggregations.  After 29 weeks 

at 32°C, there were more non-disulfide linked PA in the control HPN bar than in those prepared 

with extruded MPC80.  In the latter samples, vertical lane smearing subsided and a single band 

appeared near the top of the lane, which indicated formation of a high molecular weight, non-

reducible PA after extreme storage of these HPN bars.  Similar PA formed during MPC80 
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powder storage as advanced Maillard browning products (e.g., glutaraldehyde) and di-carbonyls 

(e.g., glyoxal) cross-linked proteins.38-40  HPN bars formulated with extruded MPC80s were less 

prone to internal glycations and induced protein aggregations because free amine concentration 

was significantly lower in the base material (Table 3).  Since β-lg was not pre-aggregated in the 

control powder, it was more prone to glycation and increasing molecular weight during HPN bar 

storage, which was why the band for this protein dispersed and migrated a shorter distance on 

each gel (Figures 2 and 3).  HPN bar texture changed slower when formulated with extruded 

MPC80 partly as β-lg was pre-aggregated into DLPA and less likely to participate in internal 

disulfide bond formations, and partly due to the inability of the protein to cause or participate in 

Maillard-induced aggregations.10 

CONCLUSIONS 

Extrusion followed by drying and milling altered some physicochemical properties of 

conventionally produced MPC80.  Processing MPC80 increased its bulk and particle densities, 

and decreased interstitial and occluded air volumes.  Solubility and WHC of extruded MPC80 

were both lower than the spray dried control.  Extrusion improved MPC80 wettability by 

disrupting the hydrophobic barrier commonly found on MPC powder particles.  Chemically, 

extrusion decreased MPC80 free sulfhydryl and free amine concentrations by inducing protein-

protein disulfide bond formation and protein glycation.  Increasing powder density and lowering 

occluded air volume led to denser, more cohesive HPN bars.  With improved wettability, 

extruded MPC80 readily hydrates during HPN bar production, which, in addition to cohesion, 

contributes to partial particle collapse and prevents intact particles from absorbing moisture from 

other constituents during storage.  Maillard-induced aggregation was more prevalent than 

disulfide-induced aggregation in all the HPN bars.  With lower free sulfhydryl concentration, 
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free amine concentration, and protein solubility, extruded MPC80 was less reactive in the HPN 

bars.  Chemical changes occurred by extruding MPC80, yet texture and stability of the model 

HPN bars were influenced by the physical properties.  Thus, the physicochemical properties of a 

protein powder need consideration when formulating HPN bars or other solid-like intermediate 

moisture foods.  
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TABLES 1 

Table 1.  Protein powder particle size diameters1, span values2, densities3, and air volumes4 2 

Powder5 D10 D50 D90 D4,3 S ρloose ρ100X ρ1250X ρparticle Voa Via 

MPC80 16a 49a 121c 61a 2.1d 310b 360c 390c 1110b 0.178a 1.89a 

E95 2c 25c 103d 43d 4.0b 520a 600ab 650a 1320a 0.035b 0.89c 

E105 2c 25c 147a 52c 5.7a 510a 590b 630b 1330a 0.029b 0.95b 

E116 3b 38b 132b 57b 3.3c 530a 610a 650a 1320a 0.034b 0.88c 
1 D10, D50, and D90 are diameters (µm) where 10%, 50%, and 90% of all powder particles, respectively, have smaller size.  D4,3 is the volume-weighted mean 3 

diameter (µm).  Particle size diameters for MPC80, E105, and E116 were previously reported.10 4 
2 S represents particle size distribution span, a unit less value that describes particle size distribution width.   5 
3 ρloose, ρ100X, ρ1250X, and ρparticle are loose, tapped, extremely tapped, and particle densities (g L-1), respectively. 6 

4 Voa and Via are occluded and interstitial air volumes (L kg-1), respectively. 7 
5 MPC80, conventionally produced milk protein concentrate with 800 g kg-1 protein.  E95, E105, and E116, MPC80 extruded at die-end melt temperature of 8 

95°C, 105°C, and 116°C, respectively. 9 
a-d Least squares means are significantly different (P < 0.05) if they do not share a common superscript within the same column.10 
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Table 2.  Protein free sulfhydryl concentration1 for each powder2 and within the high-protein nutrition bar formulated with 11 

that powder after storage3 12 

Powder4  -SDS +SDS  HPNB-0W-22 HPNB-6W-22 HPNB-29W-22 HPNB-6W-32 HPNB-29W-32 

MPC80  5.2a,z 6.0a,z  5.8a,y 5.8a,y 5.5a,y 5.3a,y 13.7a,z 

E95  2.9b,z 2.9b,z  - - - - - 

E105  2.8b,z 2.1b,z  3.0b,z 1.0b,yz 0.4b,y 0.6b,y 3.1b,z 

E116  1.4b,z 1.5b,z  1.2b,y 1.1b,y 0.4b,y 0.4b,y 4.0b,z 

1 µmole g-1 13 
2 Protein powder free sulfhydryl concentration was measured with (i.e., + SDS) and without (i.e., -SDS) in the assay buffer.   14 

3 High-protein nutrition bars (i.e., HPNB) were prepared using the indicated protein powder and were stored for 0, 6, or 29 weeks (i.e., 0W, 6W, or 29W) at 22°C 15 

or 32°C (i.e., 22 or 32).10 16 

4 MPC80, conventionally produced milk protein concentrate with 800 g kg-1 protein.  E95, E105, and E116, MPC80 extruded at die-end melt temperature of 17 

95°C, 105°C, and 116°C, respectively. 18 

a-b Least squares means are significantly different (P < 0.05) if they do not share a common superscript within the same column. 19 
y,z Protein powder or HPN bar least squares means are significantly different (P < 0.05) if they do not share a common superscript within the same row.20 
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Table 3.  Protein free amine concentration1 for each powder and within the high-protein 21 

nutrition bar formulated with that powder after storage2 22 

Powder3 R-NH2 HPNB-0W-22 HPNB-6W-22 HPNB-29W-22 HPNB-6W-32 HPNB-29W-32 

MPC80 877a 828a,z 615a,y 367a,x 380a,x 264a,w 

E95 775b - - - - - 

E105 748c 713b,z 585b,y 358a,x 355ab,x 229b,w 

E116 695d 667c,z 560b,y 348a,x 346b,x 242ab,w 
1 µmole g-1 23 
2 High-protein nutrition bars (i.e., HPNB) were prepared with the indicated protein powder and were stored for 0, 6, 24 

or 29 weeks (i.e., 0W, 6W, or 29W) at 22°C or 32°C (i.e., 22 or 32).10 25 

3 MPC80, conventionally produced milk protein concentrate with 800 g kg-1 protein.  E95, E105, and E116, MPC80 26 

extruded at die-end melt temperature of 95°C, 105°C, and 116°C, respectively.   27 

a-d Least squares means are significantly different (P < 0.05) if they do not share a common superscript within the 28 

same column.   29 
w-z HPN bar least squares means are significantly different (P < 0.05) if they do not share a common superscript 30 

within the same row. 31 

  32 
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Figure 1.  Representative side view (A) and apparent contact angle (B) of a water droplet 33 

on each protein powder during dynamic contact angle analysis.  MPC80 (―), conventionally 34 

produced milk protein concentrate with 800 g kg-1 protein.  E95 (···), E105 (‐‐‐), and E116 (− − −), 35 

MPC80 extruded at die-end melt temperature of 95°C, 105°C, and 116°C, respectively. 36 
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 38 

Figure 2.  Non-reduced extraction/non-reduced SDS-PAGE of the proteins in model high-39 

protein nutrition bars formulated with MPC80 (A), E105 (B), or E116 (C) after storage for 40 

0, 6, and 29 weeks at 22°C or 32°C.  MPC80, conventionally produced milk protein concentrate 41 

with 800 g kg-1 protein.  E105 and E116, MPC80 extruded at die-end melt temperature of 105°C 42 

and 116°C, respectively.  M, a molecular weight marker (kDa).  DLPA and PA, disulfide-linked 43 

protein aggregates and protein aggregates, respectively.  BSA, bovine serum albumin.  Caseins, 44 

from high to low molecular weight, include:  αS2, αS1, β, and κ.  β-lg, beta-lactoglobulin.  α-la, 45 

alpha-lactalbumin. 46 
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 48 

Figure 3.  Non-reduced extraction/reduced SDS-PAGE of the proteins in model high-49 

protein nutrition bars formulated with MPC80 (A), E105 (B), or E116 (C) after storage for 50 

0, 6, and 29 weeks at 22°C or 32°C.  MPC80, conventionally produced milk protein concentrate 51 

with 800 g kg-1 protein.  E105 and E116, MPC80 extruded at die-end melt temperature of 105°C 52 

and 116°C, respectively.  M, a molecular weight marker (kDa).  PA, protein aggregates.  BSA, 53 

bovine serum albumin.  Caseins, from high to low molecular weight, include:  αS2, αS1, β, and κ.  54 

β-lg, beta-lactoglobulin.  α-la, alpha-lactalbumin. 55 
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SUPPORTING INFORMATION 57 

 58 

Figure S1.  Protein solubility at different pH for extruded and conventionally produced 59 

MPC80.  Average solubility (n = 2) was expressed as the soluble protein to total protein ratio.  60 

MPC80 (×), conventionally produced milk protein concentrate with 800 g kg-1 protein.  E95 (□), 61 

E105 (○), and E116 (◊), MPC80 extruded at die-end melt temperature of 95°C, 105°C, and 62 

116°C, respectively.  Error bars indicate ± 1 SD. 63 
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Table S1.  Protein powder water holding capacity1, and water droplet contact angle2, 65 

volume3, and angular and volumetric rates of change4 during dynamic contact angle 66 

analysis 67 

Powder5 WHC θ0s θ25s dθ/dt V0s V25s dV/dt  

MPC80 3.3a 66b,z 61a,y -0.19b 3.11a,z 3.08a,z -1.31a 

E95 1.9b 86a,z 64a,y -0.88a 3.49a,z 3.34a,y -6.24a 

E105 1.9b 85a,z 62a,y -0.91a 3.45a,z 3.28a,y -6.81a 

E116 1.8b 90a,z 62a,y -1.12a 3.64a,z 3.56a,y -3.26a 
1 WHC, water held per solid mass (kg kg-1) 68 
2 θ0s and θ25s, contact angle (°) after 0 and 25 s, respectively. 69 
3 V0s and V25s, volume (µL) after 0 and 25 s, respectively. 70 
4 dθ/dt and dV/dt, angular (° s-1) and volumetric (nL s-1) rates of change, respectively.   71 
5 MPC80, conventionally produced milk protein concentrate with 800 g kg-1 protein.  E95, E105, and E116, MPC80 72 

extruded at die-end melt temperature of 95°C, 105°C, and 116°C, respectively. 73 

a-b Least squares means are significantly different (P < 0.05) if they do not share a common superscript within the 74 

same column. 75 
y,z Water droplet contact angle or volume least squares means are significantly different (P < 0.05) if they do not 76 

share a common superscript within the same row. 77 

 78 
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